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Executive Summary

CTrees is an non-profit non-governmental organization (NGO) created in 2022 by
scientists and engineers with over 20 years of experience in tropical forests, and
building global carbon monitoring systems and solutions that have informed climate
change policies. Our leading experts work alongside public and private partners to
provide operational data to national and state governments, project developers,
investors, and decision makers.

The first version of this data product provides a detailed, high-resolution view of tree
cover loss and forest degradation, attributed to specific human activities such as
selective logging, forest fires, and road construction. While forest degradation can be a
broad concept, we focus on the most pervasive human-induced disturbances in tropical
forests that are traceable via satellite imagery. For the first time, these disturbances are
directly attributed within a data product. We expect this will help the community better
understand the dynamics of deforestation and degradation across pantropical forests.
Furthermore, we plan to continually refine and enhance these datasets in future
updates.

This Algorithm Theoretical Basis Document (ATBD) outlines the methodological
framework used to generate these data layers, along with their known limitations. As a
living document, it will be updated as new insights are gained and as limitations are
addressed. Our dataset is derived from Planet NICFI imagery and is openly available for
non-commercial use in education, research, and efforts to combat deforestation and
forest degradation.



1. Introduction

1.1. Scope and content

This ATBD document describes the data and methods used to create maps of tree
cover loss and degradation by selective logging, forest fire and road construction in the
pantropical rainforests from 2016 to 2023, available on the CTrees REDD+AI platform.

1.2. Area of interest

Our study area is the land covered by pantropical evergreen forests (Figure 1). These
are the areas where our models were run for the data products at v1.0.

Figure 1 - Pantropical evergreen rainforests.

2. Data

This work is based on the Planet satellite images over the tropics made available by the
Norway’s International Climate and Forest Initiative (NICFI, https://www.nicfi.no/) to help
save the world's tropical forests while improving the livelihoods of those who live off, in,
and near the forests [Planet2017]. The Planet NICFI images are multispectral satellite
images containing red, green, blue, and near infrared bands at 4.77 x 4.77 m of spatial
resolution for the Normalized Analytic Basemaps. The temporal resolution of the NICFI
images is currently one month (Table 1), and they are a mosaic composite of the best
daily acquisitions during the month. Consequently, Planet NICFI images are mostly
cloud free, thus providing the best freely available multispectral dataset to monitor Land
Use and Land Cover (LULC) changes in tropical regions. Each Planet NICFI tile
corresponds to an area of 20 x 20 km. More than 61,000 Planet NICFI tiles overlap the
area of interest, totalling more than 24.4 million km? of analyzed area. Imagery from
Jan-Feb 2024 were used only for confirmation of detections.



https://www.nicfi.no/

Table 1 - Planet NICFI images characteristics.

Time period Type of composite Number of composites
Dec. 2015 to Jun. 2020 Biannual - every 6 months 10

Sep. 2020 to Feb. 2024 Monthly 42
3. Model

The first step to the creation of the map to monitor changes, is to segment the object of
interest, i.e. tree cover, logging, fire and roads, and also additional objects to mask
such as cloud and water, with high accuracy in the Planet NICFI images. To do this, a
classical Unet model (Ronnenberger et al, 2015) is used which is a robust deep
learning model for semantic segmentation tasks (Figure 2). This model was chosen
because of its proven accuracy on the task (Wagner et al., 2019; Wagner et al., 2023;
Dalagnol et al., 2023) and also because it is fast enough for training and inference,
which enables us to scale our model to the pantropics.

|input image, 256 x256x 4 |

i } U-NET model AN output mask, 256x256x1

tree cover

Figure 2. Architecture of the U-net model used to produce tree cover masks. Note that
the same architecture is used for all of our models.

4. Tree Cover Loss

The theoretical basis for this layer comes from Wagner et al. (2023) paper. Since the
publication of this paper, the model and postprocessing have been improved.



4.1 Training and Prediction

To train the U-net model for evergreen forest cover, we selected 130 Planet NICFI
satellite images from different seasons, covering the region of Mato Grosso (Brazil)
between September 2020 and September 2021. From these, we filtered out images
with heavy cloud cover or poor lighting, leaving 75 usable images. We then used a deep
learning method called the k-textures model to automatically segment these images into
eight different classes, based on their visual characteristics. After reviewing the results,
we kept 23 images where the forest segmentation was accurate. Any small errors were
manually corrected, and the images were simplified into two categories: forest and
non-forest (which included areas like agriculture, cities, water, and bare land).

Next, we trained an initial U-net model and applied it to all 130 original images. We
excluded the 23 images used earlier and selected another set of 21 images with
atmospheric challenges like clouds and haze. For these images, we manually adjusted
the forest masks to ensure only clearly recognizable forests were labeled, while clouds
and heavy haze were marked as non-forest.

Then, we trained a new version of the U-net model with this sample and applied it to all
regions where we wanted the model to improve the performance in tropical forested
regions, in shaded areas, and in forest with conspicuous phenology. For these images,
we took the best forest mask and we manually adjusted them if needed.

After this final step, in total, we created a training set of 24,962 image patches (each
256x256 pixels) along with their corresponding forest/non-forest labels. Patches can
include forest, background or both. We used 96 % of the patches for training and 4% for
validation. The images were further processed with random flips to enhance the training
data. This data augmentation, combined with the natural variety in weather and lighting
across the different dates, prepared the images for the final U-net model training.

The loss function of the model was designed as a sum of two terms: binary
cross-entropy and Dice coefficient-related loss of the predicted mask. We used the
overall accuracy (i.e. the frequency with which the prediction matches the observed
value) as the metrics to assess the model performance. The best model had a loss of
0.0353 and an overall accuracy (OA) of 0.9838.

Additionally to the tree cover layer, we also developed additional models for cloud,
water and forest canopy height, using the same model architecture.

Then the predictions of tree cover, cloud, water and tree height were made for all the
available Nicfi images. For the prediction, a border of 256 neighboring pixels containing
the neighbor image's values or a mirroring image (if no neighbor image was present)



was added on each side of the Planet tiles of 4096 x 4096 pixels. This border method
was used to avoid border artifacts during prediction, a known problem for the U-net
algorithm. Then, the predictions were made on the entire image and cropped to recover
the original 4096 x 4096 pixels Planet tiles size.

Predictions and posprocessing were made on EC2 AWS instances (g5.xlarge and
réa.2xlarge) using ray on the anyscale platform.

4.2 Tree cover loss map

Here we detail the process used to generate the tree cover loss map displayed on the
REDD+AI platform.

First, an evergreen forest baseline is created, consisting of pixels classified as
evergreen tree cover at least once in the first four cloud-free observations. Additionally,
a water mask baseline is created with pixels classified as water at least eight times in
cloud-free pixels throughout the time series. A height baseline is also made for pixels
with a tree height of at least 5 meters in four or more of the initial cloud-free images.

Then, the monthly tree cover loss map is generated. Tree cover loss is identified when
pixels previously classified as forest become classified as non-forest due to complete
forest removal. The initial detection of tree loss is labeled as unconfirmed, and it
becomes confirmed if the pixel is classified as non-forest at least twice in the
subsequent cloud-free images. Once tree loss is confirmed, the pixel is assigned the
date of the first detection. If unconfirmed during the time series, the pixel reverts to a
forested status. Tree loss detected towards the end of the time series, pending
confirmation, is classified as a tree cover loss alert. Forested pixels that remain forested
during the period are classified as 'Stable Forest'.

Our forest baseline voluntarily overpredicts forest cover to avoid missing any forested
pixels. However, we have a method to remove the misclassified pixels in the forest
baseline, as these pixels always appear as deforested in the initial dates. False
detections of deforestation in the first dates, caused by an incorrect forest baseline, are
eliminated using the water mask (for pixels classified as water) and the height mask (for
pixels with a canopy height below 5 meters).

The final map displayed on the website is the annual aggregation of the
biannual-to-monthly tree cover loss data and the stable forest layer.



4.3 Tree cover loss limitations

Main false detections of tree cover loss arise from the following: 1 - Deciduous forests
that appear evergreen in the biannual Planet NICFI data, but their 2-3 month
deciduousness begins to show when the NICFI data becomes monthly after September
2020, artificially increasing the tree loss count in 2020 or 2021 depending on the timing
of the dry season; 2 - fires where crown damage is persistent and remains brown for
several months exposing the soil; 3 - persistent shade in certain mountainous areas; 4 -
artifacts due to cloud shading; 5 - geolocation errors in the NICFI images, especially in
very cloudy environments, primarily affecting forest borders; 6 - extremely fragmented
landscapes, such as agricultural areas or river islands, where small forests are more
prone to false detection; and 7 - natural tree cover loss, such as windthrow, riverbed
changes or extreme drought within evergreen forests.

Main tree loss omissions come from: 1 — unusual/rare forest types not included in the
tree cover model training dataset, such as some forests in riverbeds in the Democratic
Republic of the Congo; 2 - errors in NICFI images for 2-3 successive dates, where an
image is produced over a forest but is blurry or contains artifacts not detected by our
cloud model; 3 - extremely cloudy environments with fast-recovering vegetation, where
forest regeneration occurs before a new cloud-free NICFI image is produced; and 4 -
some deforestation with remaining trees and ground covered with dense green lower
vegetation.

5. Degradation from Logging, Fire and Road Construction

The theoretical basis for these layers come from Dalagnol et al. (2023) paper. Since the
publication of this paper, the model and postprocessing have been improved.

5.1. Definition

Forest degradation in tropical rainforests mainly consists of losses of tree cover and
carbon storage, among other ecosystem services, which does not result in complete
clearing of the forest (Figure 3). Here, we focus on human-induced disturbances that
cause forest degradation by logging, forest fire, and road construction, which can be
traceable using satellite imagery.

The Degradation - Logging layer measures forest degradation due to logging. In the
tropics, logging includes selective logging, where trees are removed inside forests
without clear cutting, over logging cycles that can last decades. Logged forests are
expected to regenerate over time without additional tree removal. The Degradation -



Logging layer encompasses both legal and illegal logging. Logging can be legal in forest
concessions where companies are required to follow rules of sustainable forest
management. lllegal logging can result in severely increased levels of disturbance.

The Degradation - Forest Fire layer measures the area of burned forests, where the
forest has been partially lost or its ecosystem services diminished. Areas subject to
forest fire degradation often experience increased tree mortality and reduced
productivity that can last from years to decades.

The Degradation - Roads layer measures areas degraded by construction of roads and
trails, which can be used for transportation or for illegal activities. Roads are often
connected to new deforestation and logging hotspots. Forests degraded by road and
trail construction can regenerate over time if the road is no longer used.
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Figure 3 - Examples of (a) logging, (b) forest fire, and (c) road construction (Figure from
Dalagnol et al., 2023).



5.2. Training and Prediction

The U-Net model was trained using imagery from over 500 NICFI tiles, comprising
138,736 image patches (256 x 256 pixels) for training and 35,115 patches for validation
(Figure 4). Most samples were collected from the August 2021 mosaic due to the lower
cloud cover typical of the Amazon dry season, but the dataset also included imagery
from 20 other dates. The training samples were used to calibrate the model, while the
validation samples helped select the best model based on the F1-Score metric. These
samples were manually collected through visual interpretation of Planet NICFI imagery
and vectorization of areas impacted by logging, fires, and road construction (as shown
in Figure 3). For logging, vectors were created to encompass forest areas where at
least two of the three key spatial indicators of logging—treefall gaps, logging decks, and
trails—were observed (Figure 3a). It is important to note that the mapping of logging
covers the entire boundary of the logged area similarly to a forest management or forest
concession area, not just the individual pixels of complete clearing. For fires, we
sampled all burned areas, not just forest fires, which were distinguished later during
post-processing. During vectorization, forest pixels within burned patches were
included, even if no apparent fire was observed, as they were likely impacted by the
fires (Figure 3b). Compared to the models trained at Dalagnol et al. (2023) for Mato
Grosso (Brazil), the training dataset significantly expands the sampling to include
various forest environments across Amazonia, Congo basin and Southeast Asia. The
model's configuration, training, and prediction processes were the same as done before
in the paper and as explained in the tree cover loss section. After prediction, maps were
filtered for cloud cover using a model trained to identify clouds in order to reduce false
positives. For more detailed information, see Dalagnol et al. (2023).

\ ¥

s W Training (n=450 tiles)
M Validation (n=114 tiles)

Figure 4 - Training and validation tiles used for the degradation layers.



5.3. Degradation maps

We aggregated the predictions into cumulative maps spanning from 2016 to 2023,
where each pixel value represents the first biannual occurrence of degradation,
measured at a six-month interval. To minimize false positives due to atmospheric
effects, vegetation phenology, image artifacts (such as surface reflectance normalization
issues, scan lines, and geolocation errors), and topographic effects, we implemented a
confirmation logic. Our assumption is that true disturbances will continue to show some
impact in subsequent images. Based on this, we applied a confirmation process to the
monthly data (from September 2020 to the most recent date) for all layers. Specifically,
logging and fire events required at least two detections within the following three months
to be confirmed, while road construction required at least three detections in the same
period. For the biannual data (from 2016 to June 2020), this confirmation process was
applied only to the road construction layer, where at least two detections in the next
three semesters were needed for confirmation. We did not apply this logic to logging
and fire events in the biannual data, as these types of disturbances often show rapid
vegetation recovery. In some cases, degradation effects from logging and fire disappear
from imagery within six months, making it difficult to confirm their long-term impact.
Meanwhile, the extra confirmation applied for roads was to minimize geolocation issues
present in some NICFI mosaics, where in a subsequent image part of the mosaic could
be displaced up to a few kilometers, resulting in ‘double-roads’ being mapped. This
extra confirmation procedure significantly minimizes these effects. Exclusively for the
confirmation of detections up to Dec 2023, we also employed imagery of Jan-Feb 2024.

The cumulative maps correspond to one map for each degradation type: logging, fire,
and road construction. To achieve the final version of the maps, they went through
visual quality assessment (QA) for some regions, where issues were identified and
minimized through implemented quality controls (QC). Some of these were common
errors among some of the layers (Table 2), and some were specific to each layer.

Table 2 - Common quality assessment and control implemented for each layer.

Quality Assessment Layers Quality Control

Few false detections over | Logging, Fire, Road Filtered detections overlapping
water bodies water bodies using data from
the global surface water (GSW)
dataset v1.4 (Pekel et al., 2016)

Few false detections over | Logging, Fire Filtered detections overlapping
urban settlements urban settlements using data
from the Global Human
Settlement Layer (GHSL)
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dataset (Schiavina et al., 2023)

False detections over palm | Logging Filtered detections overlapping
oil plantations tree crop plantations and
especially palm oil plantation
using data from Du et al. (2022)

Logging : The logging map was filtered to exclude stable non-forest areas using our
tree cover loss map. Specifically, regions identified as non-forest in 2016 were used to
filter out logging results, preventing false detections where logging appeared to overlap
with non-forest areas. During quality assessment, we also observed that logging
detections could falsely occur in regions where large trees were flowering, particularly in
the Amazon. When many trees flower simultaneously, they create small circular areas
with contrasting colors, which can resemble logging decks to the model. To minimize
this issue, we applied a filter to retain only logging detections larger than 3 hectares.
However, some of these issues persist and are scheduled for further investigation in
future versions.

Forest Fire : To achieve the final map of forest fires, the fire map - which at this point
represents any burned area - was filtered to exclude burns over non-forest areas and
deforestation fires. This was achieved by intersecting our fire data with our tree cover
loss data, removing any fires occurring in stable non-forest areas or areas where tree
cover had already been lost before the fire. As a result, the final map primarily reflects
burned areas that affect standing forest, henceforth called ‘forest fire’. Since our tree
cover loss data may delay detection in cases where areas burn and regenerate quickly
(especially in the early part of the time series, from 2017 to 2020), we also incorporated
the Global Forest Change (GFC) tree cover loss data v1.11 for additional filtering. This
ensures a more accurate representation of forest fires in the final dataset.

Road Construction : We found that road segments in the Planet NICFI imagery (~3
pixels in width) often appeared larger than their actual size. To address this, we applied
image morphology techniques to progressively thin the road segments, approximating
them to their center point — a process known as "skeletonization" using the magick R
package (Ooms, 2024). For most roads, this process reduced their width to a single
pixel. To better match what is observed in the Planet NICFIl imagery, we then expanded
the roads back to a three-pixel width by adding a one-pixel buffer on each side (Figure
5). Therefore, to roughly estimate road lengths, one should divide the area occupied by
roads by three, and then divide by the data resolution (4.777314 meters). Additionally,
we applied our own water model to reduce false detections over smaller river streams,
which can sometimes resemble narrow roads in imagery. Some areas, particularly in
Peru and western Amazonas (Brazil), were manually excluded due to the prevalence of
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small river streams that, due to their narrow and brown appearance, can easily be
mistaken for roads or trails within the forest.

image_morphology('Thinning', 'Skeleton', iterations = 12)

RGB
Planet NICFI

Segmentation

Center point

Final result

Figure 5 - Road construction post-processing. Planet NICFI imagery from June 2024.

5.4. Limitations

Since the prediction for the year 2016 includes any visible degradation that occurred in
2016 or earlier, we do not include it in the REDD+AI platform for logging and forest fire.
However, we include roads from 2016 as they represent large pre-existing networks,
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included primarily for visualization purposes. That said, change rates should only be
assessed starting from 2017.

False detections for logging may still occur in areas such as tree crop plantations,
agroforestry zones, or during events of large-tree flowering. For forest fires, false
detections might be seen in floodplains, deforested areas missed by tree cover loss
data, over terrain features or drier forest environments where phenological changes
make the vegetation appear brown, mimicking burn scars. False detections for road
construction may also appear over small river streams where water masking was not
entirely effective.

We plan to improve the Al models and post-processing techniques to enhance the
quality of these datasets in future versions. However, it is not feasible to inspect every
pixel across the pantropics, and thus we cannot guarantee that all issues have been
identified or fully resolved. We welcome feedback to improve the accuracy of the maps.

6. Data processing pipeline

We developed a data processing pipeline using Amazon Web Services (AWS) cloud
tools to scale our data products efficiently (Figure 6). This effort combined the
multidisciplinary expertise of CTrees' science and engineering teams. Processing these
large datasets was made possible through the use of high-end GPUs, orchestrated in a
distributed manner using the Ray and Anyscale frameworks within the AWS cloud. The
Planet NICFI dataset for our area of interest consisted of over 100 TB of compressed
8-bit data. To generate the final maps, we employed and integrated eight different Al
models, including tree cover, degradation, cloud, and water cover mapping.

Data Collection Train Al models over Predict over Post-Processin Outputs Validation and Area
(biannual 2016-2020, monthly Sep 2020+) labelled data all Region 9 (2016-2023) Assessments
PlanetScope Logging, Fire
NICFI dataset & Roads - Biannual s |
independently " Prediction for N Cumulative amples
Degradation All Models RlisCious Pegerken stratified
v U-NET model Maps Cistribition
i - @
Pre-processing Manually label
(>100 Tb of training data in _— NAagre . T
data) QGIs* e Cumulative - Logging P!
Cloud cover Maps - Fire by team of_
UNET model Americas ‘/ Aggregation & - Roads interpreters in
- Quality Control
- —— ey e
Aulumal_ic_ally Tea@ Africa q Monthly Tree Accuracy and
label training ree Cover Cover Loss Annual Areas
data U-NET model i\ Map
~— N ) ——
A
Photo interpretation requires specialists in Earth lterative process of training and Asia A
Observation and LUCC evaluating models Distributed computing to process >100 Tb and 55 trillion pixels Assessments for REDD+
A~
...... q
Airflow ) AWS Lambda Vv"\ Studio - P pLJthOﬂ ~ ¢ ONUNE
GRS ’ tn EC2 high-end GPUs RAY ) )
. Amazon 83 (0 (|5 Te Fl = : e Studi
A~ B ensorFlow
ne QGIS TensorFlow tudio

Figure 6 - Simplified representation of the data processing pipeline.
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7. Validation

Validation of the data will be performed following good practices of map validation using
a design-based stratified random sampling approach (Olofsson et al., 2014; Olofsson,
2021). We expect this to come with the next update of data in Q1 2025.

8. Data Availability

The datasets can be visualized at the CTrees REDD+AI platform
www.ctrees.org/REDDAI. This platform also brings statistics at country, state, and
municipalities levels. The underlying geospatial raster data can be accessed upon
reasonable request through research collaboration for specific areas of interest. The
entire dataset will not yet be available at this time, until we can finalize validation and
further analysis of the datasets.

9. How to Cite
The preferred citation for the platform is :

CTrees.org. (2024). REDD+ALI: Tree cover loss and degradation from logging,
forest fire and road construction in tropical forests - v1.0.
https://www.ctrees.org/REDDAI/ (accessed on dd/mm/yyyy).

Bibtex version :

@Misc{CTreesREDD+AI2624,
author = {CTrees.org},

month = oct,
note = {(accessed on dd/mm/yyyy)},
title = {REDD+AI: Tree cover loss and degradation from logging, forest fire

and road construction in tropical forests - v1.0},
year = {2024},
url {https://www.ctrees.org/REDDAI/},

}

When using the datasets and platform in any way, please also cite these two papers
below which provide the basis for the data and methods:

Wagner, Fabien H., Ricardo Dalagnol, Celso H. L. Silva-dunior, Griffin Carter,
Alison L. Ritz, Mayumi C. M. Hirye, Jean P. H. B. Ometto, and Sassan Saatchi.
2023. “Mapping Tropical Forest Cover and Deforestation with Planet NICFI
Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015
to 2021.” Remote Sensing 15, no. 2: 521. https://doi.org/10.3390/rs15020521.
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Dalagnol, Ricardo, Fabien Hubert Wagner, Lénio Soares Galvao, Daniel Braga,
Fiona Osborn, Le Bienfaiteur Sagang, Polyanna Da Conceigédo Bispo, Sassan
Saatchi, et al. 2023. “Mapping Tropical Forest Degradation with Deep
Learning and Planet NICFlI Data.” Remote Sensing of Environment 298:
113798. https://doi.org/10.1016/j.rse.2023.113798.

10. License

All data here are provided for reducing and reversing the loss of tropical forests,
contributing to combating climate change, conserving biodiversity, contributing to forest
regrowth, restoration and enhancement, and facilitating sustainable development, all of
which must be Non-Commercial Use according to the Planet NICFI license
(https://planet.widen.net/s/zfdpf8gxwk/participantlicenseagreement_nicfi_2024). Any
publications, technical reports, models, or data products that utilize these datasets are
required to cite the relevant papers and REDD+AI platform (refer to the ‘How to Cite’
section) and must acknowledge the Planet NICFI license.

11. Final considerations

This data product represents a significant step forward in supporting REDD+ initiatives
by providing a high-resolution, satellite-based view of tree cover loss and forest
degradation directly attributed to human activities such as selective logging, forest fires,
and road construction based on CTrees’ Al models and human expertise. By delivering
clear and traceable data on these key drivers of forest degradation, the product enables
more precise monitoring, reporting, and verification (MRV) for REDD+ efforts. This, in
turn, can help countries and stakeholders better assess progress toward their
deforestation and degradation reduction goals.

The ability to attribute specific causes of degradation enhances transparency and
accountability, allowing for targeted interventions and informed policy decisions. While
this is the first version, we are committed to improving the dataset over time, further
enhancing its utility for the REDD+ community. With continuous updates, the product
will evolve into an even more robust tool for understanding and helping to mitigate
deforestation and forest degradation across the tropics, supporting global efforts to
combat climate change and preserve critical forest ecosystems.
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